the struggle between diverse types of reformers, all of whom are called progressives.

Looks at the social context surrounding the eight-year study through stories of education leaders of the time, offering a perspective on progressive education and the educational experiment that attempted to document its effects.

A classic work that looks at the work of key figures in the early years of the curriculum field, including John Dewey and Franklin Bobbitt.

Summerhill School Website. www.summerhillschool.co.uk/

Presents A. S. Neil's enduring experiment in progressive education in a format useful for those interested in historical interpretations of progressivism in schools as well as for teachers interested in using an emergent curriculum model.

Traces the history of schooling in the United States, arguing that much of the history is a preoccupation with trying to find the best way, to the detriment of sustained progress.

An American classic, the film depicts high school in the 1960s from Wiseman's perspective. It was controversial in its time and a High School website stimulates continued debate on issues raised by the film.

Chapter 4

Conceptualizing Curriculum Phenomena

To this point we have raised two obvious questions: What should be the aims of education and what form should general education take? Now we raise a set of not-so-obvious questions that nevertheless are important for a teacher to think about with regard to curriculum matters. What is knowledge? What sorts of things can be taught and learned? Is a listing of subjects the only or best way to conceptualize a curriculum? What are some useful ways for teachers and curriculum designers to think about the stuff a curriculum is made of? In this chapter we will consider these questions as they illuminate both the instructional and the programmatic aspects of the curriculum.

By conceptualizing, we mean developing ways of thinking and talking about something, including making distinctions, defining, naming, and noting significant features. A successful conceptualization is an extremely valuable contribution to the understanding of any phenomenon. For example, while the conceptualization of the phenomena of heat and temperature consisted of the hypothetical weightless fluid phlogiston that was supposed to carry heat and cold from one place to another, progress was slow in many fields of science in which heat played an important part. When these phenomena were conceived differently, in terms of the motion of molecules, research results came more quickly.

In psychology, Freud's conception of the personality as having three fundamental parts—id, ego, and superego—gave us a way to ask certain kinds of questions and to explain certain psychological phenomena we could not have formulated otherwise. His conception also gave us ways to treat certain forms of mental illness. For many purposes ordinary language and common sense provide sufficient means for thinking and talking about curriculum matters. But, as we shall see in this chapter, sometimes more explicit formal conceptualizations of curriculum phenomena are helpful.

One of the best examples of our concern in this chapter, and also one of the most useful answers to the conceptual question of what it is that is taught and learned, was provided in the mid-twentieth century by the philosopher Gilbert Ryle in his analysis of the concept of knowledge.1 Ryle
made it clear that there are important differences between knowing how to do things and knowing that such and such is so. We can learn that Columbus discovered America or that \(F = MA \) fairly directly by being told or reading that these things are so. In school we acquire much information and knowledge of this sort in these direct ways. But we also learn such skills as how to read and how to do scientific experiments, and these require for their mastery many periods of practice over long periods of time in a way that learning facts and formulas does not. Verbal knowledge is useful, but it is not skill knowledge; and sometimes the two are confused by teachers. Verbally learning, and repeating on a test, the steps of the scientific method does not ensure that one can skillfully do experiments, just as getting 100 percent on a test on a book on swimming does not guarantee that the non-swimmer will be able to keep afloat in the water. Learning certain facts about art or literature does not necessarily mean we have learned the skills needed to analyze and appreciate art or literature.

On the other hand, everyone knows of cases in which children are able to mimic the form of a skill without grasping its substance. A teenager offers a glib, formally accurate analysis of the imagery in Shakespeare’s *Midsummer Night’s Dream* but is only dimly aware of its human significance. A bright elementary school student can design an experiment to answer a scientific question but knows too little science to ask a good question and cannot say which questions have already been answered.

The important point is not that knowing how is better or worse than knowing that, but that it is important to distinguish between types of knowing and how much of what kind of learning is appropriate for a given situation. The conceptualization of learning as being of these two kinds gives us the capability to distinguish between them and thus enables us to ask and to answer many useful pedagogical questions. There are numerous other applications of this fact—skill conceptualization of curriculum phenomena, but the point here is to see, through this example, what this chapter is about. How we conceive of what is taught and learned is different from how we organize the curriculum and what we aim at, even though these things are all interrelated. Think of the stuff of the curriculum as skills to be learned, as well as facts, and you will see things to do as a teacher that might not have occurred to you otherwise. Think of the most basic (or most difficult) topics you will teach. What approaches are suggested in how to teach these topics when you think of them in light of the knowing how and knowing that distinction?

Knowledge in Use

In *Democracy and Excellence in American Secondary Education*, Broudy, Smith, and Burnett have provided an interesting way to think about what is learned in school. They were primarily concerned with how the things that are learned in schools are used by the learner in life. They were able to discern four uses of school learning, which they called “replicative,” “associative,” “applicative,” and “interpretive.” According to Broudy, Smith, and Burnett, knowledge is used applicatively when we are able, in appropriate situations, to repeat and use what we have learned. We remember that \(5 \times 6 = 30 \) when needed, just as we “remember” how to read or write or recall the names and sounds of musical instruments when asked to identify them. We can replicate the knowledge and skills we have learned. Much of our knowledge is used this way; much of the teaching in schools is directly aimed at producing the replication of knowledge.

But some things are learned in school indirectly, and students sometimes use things learned in school associatively. We talk to friends about a concert and link together things we learned about composers, instruments, history, and musical forms in ways that they happen to come to mind and not necessarily in the exact way they were taught or learned in school. We also form other kinds of associations in school. Having a mean, strict, or unfeeling teacher of classical music may later lead us to associate discomfort with such music. We also use our learning associatively when we link things previously learned with new things, as we might associate our knowledge of chemical reactions with some news about a new kind of medicine or connect our knowledge of Shakespeare with an episode of a TV sitcom. This is a kind of connecting of bits of knowledge in use and not just a replication.

Knowledge can also be used applicatively, that is, called to mind for use in solving a problem and not just in answer to a question (replication) or in connection with other things (association). The applicable use of knowledge is aptly demonstrated in the work of the engineer. The engineer uses special knowledge and skills in solving novel problems. Applying knowledge requires seeing the connection between what one knows and what one wants to achieve. It is far easier to replicate and associate knowledge than it is to apply it. Application requires a degree of creativity and flexibility, as well as considerable intelligence. It goes without saying that teaching for knowledge applicability also requires some special qualities. How would you as a teacher try to do it?

Using knowledge interpretively is in one sense applying our knowledge, but it is using knowledge for understanding a situation and not for solving a problem or answering a question. In interpreting, our knowledge is not necessarily applied specifically and directly. It is used as a point of departure, a form of sorting, organizing, and making sense of something. We may have forgotten many of the details of the American Revolution, for instance, but we still may use our general knowledge of that revolt against perceived oppression to understand a rebellion in another country today. We also may use knowledge that we can replicate quite well, like
Freud’s theories on dreams, say, and use it to interpret a person’s dreams. In one sense all of our knowledge is interpretive. It helps us make sense of the world. Perhaps, though, only that knowledge that is meaningful to us can be used interpretively. What do you think? Can you think of examples that would demonstrate using these four conceptions of knowledge in school? In life? Do they overlap and involve each other? Is this a useful conceptualization of curriculum phenomena?

Along these same lines of thinking about how knowledge is used and how this use can demonstrate higher levels of mastery of learning, Benjamin Bloom and his associates have worked out a “Taxonomy of Educational Objectives.” Their conceptualization allows teachers and curriculum or measurement specialists to aim at, instruct for, and test different levels of cognitive objectives more systematically. There are some parallels and similarities with the above scheme of uses of knowledge, which we will point out. For our purposes, however, it is more important to see that the conceptualization of curriculum phenomena, in this case the cognitive domain, can become very highly rationalized and our ways of understanding what it is possible to aim at, very fully elaborated.

The taxonomy is arranged in six main levels from lowest to highest. Each higher level is assumed to involve mental processes and uses of knowledge that are more complex and abstract than the ones below it. The first level, simply called “knowledge” and similar to the category of “replication” above, includes objectives that call for recall from memory of such increasingly difficult things as facts, categories, methods, and theories. The second level, “comprehension,” requires the student to understand relations and to make sense of the whole. It is akin to the categories of association and interpretation above but different from them, too. Some of the types of mental operations that fall into this category are translation, interpretation, and extrapolation. The typical comprehension objective on a test, for example, requires a paraphrase of a passage or asks questions not directly answered in the passage but inferable from it. It requires a higher level of mental functioning than recall or association.

The third level of the taxonomy is “application” and is similar to Broudy, Smith, and Burnett’s similarly named category. It requires students to use some concept or principle by applying it to a new and unfamiliar situation. Since the item to be applied must be remembered, and since the student must understand the new context to which it is being applied, application generally involves the earlier levels of knowledge and comprehension.

The fourth and fifth levels are “analysis” and “synthesis.” They cover cognitive tasks and responses in which students must logically break down a complex set of ideas into its constituent elements, relationships, and principles—or build one up from a set of such constituents. The complexes may be arguments, theories, or other such related sets of ideas. An example of the use of analysis would be a history student’s untangling and breaking down the causes of the First World War into economic, political, and sociological factors. An example of synthesis would be the student’s putting together a set of ideas that expresses a unified position on the causes of war in general.

The sixth and highest level is “evaluation.” It consists of objectives that call for qualitative or quantitative judgments about the extent to which given complex entities satisfy appropriate criteria and standards of evidence. In the above history example, evaluation would be used if another student critically examined his classmate’s synthesis on the basis of breadth of explanation, plausibility, supporting evidence, cohesion, or other criteria. Judgments, in the taxonomy, are the highest form of mental activity in the cognitive domain.

The taxonomy, along with its companions in the affective and psychomotor domains, can be used to analyze a curriculum to determine whether all the various levels are represented in appropriate proportions. It can also be used in curriculum development, to plan for an appropriate balance; in implementation, to ensure that the balance is being preserved in the classroom and the school; and in evaluation, to develop an appropriate bank of test items.

Critics of this conceptualization of learning argue that it over-rationalizes what is inherently a nonrational process and has contributed to over-reliance on measurement. What do you think?

Conceptualizing the Instructional Process

Looking at knowledge and the use of knowledge as a way of conceptualizing curriculum phenomena can be very helpful in shedding light on ways for thinking about what is taught and what knowledge is. But in a way, it is a consideration of only the static elements in curriculum. The dynamics of student interaction with curriculum and instruction over time have also received the attention of theorists and are worthwhile for teachers to think about. After all, things happen to students over time in their many years of schooling. They move through the curriculum with various beginnings and endings of units and topics, subjects and activities. Education is a temporal and dynamic process. How can we conceptualize that process?

Alfred North Whitehead tried to do just that with his conception of the rhythm of education. Whitehead chastised the schools for teaching students in a way that produced “inert knowledge”: knowledge that connected or reacted with nothing in their lives and had little meaning for
them. He argued that knowledge had to be meaningfully introduced and thoroughly learned and reflected on by students, rather than collected in encyclopedic fashion. His conception of the rhythm of education can be read as a corrective to such an encyclopedic view of educating and can be applied to the teaching of a subject, a unit, or a lesson, and even to the elementary, secondary, and postsecondary articulation of education writ large.

“Romance,” “precision,” “generalization”—these are the terms Whitehead used to characterize the rhythm of education. He believed that one should begin an engagement with any subject in a romantic way, feeling excitement in its presence, being aroused by its attractiveness, and enjoying its company. Thus, for instance, children should be introduced to history or science not by lessons, but by being given exciting stories of past events or fascinating unravelings of nature’s ways. The subject then comes alive, is real, and is stimulating to the student and worth the effort of establishing a relationship with over time. Getting to know the subject better and studying it in detail is what the stage of precision is all about. The romantic interest remains and becomes the driving force of self-discipline required for the hard work of studying the subject in detail. As more and more of the parts of the subject are mastered, the stage is set for achieving a perspective on the whole and generalization becomes possible. Some of the same kind of excitement and joy as in the romantic stage is found in the activity of generalization. It is feeling a closeness to the subject because you now know it and understand it so well. Mastery of details allows for comprehension of the whole.

These figurative ways of talking about the educational process and an individual’s genuine enjoyment of it will speak to anyone who has ever come really to appreciate and understand some subject, be it history or gardening, science or baseball, literature, cooking, or computing. Whitehead sees the need for the rhythmic cycle of romance, precision, and generalization to repeat itself throughout the educational process. A lesson or unit (or both) should begin with romantic engagement with the topic, aim at the precision necessary to understand the topic, and result in an understanding of the general relationships within it. One could even view the whole of the formal educational process in these terms. Elementary school is the stage of romance; secondary schooling, precision; and college and university study, generalization.

Whitehead’s conceptualization of the educational process speaks neither to what subjects should be taught nor to what knowledge is, but forces a consideration of instruction and curriculum as it affects the student. John Dewey, in his short work *The Child and the Curriculum*, also tried to provide a useful conceptualization of this relationship. He began by pointing to the tensions between traditional and progressive educators: the former stressing the importance of traditional subject matter and the latter making the student’s interests and needs more central. Which is more important, the child or the curriculum? Dewey wisely answers, both! The curriculum contains traditional knowledge, but as curriculum, it must be seen as knowledge in relation to the learner and not as something separate from the teaching-learning process. The point of educating is to bring the child into meaningful contact with traditional knowledge while honoring the learner’s interests and needs. But how is that to be accomplished?

Dewey used the analogy of an explorer and a map, as we saw earlier, to convey his solution. Recall that, for Dewey, the explorer, like the child, is entering unknown territory. He discovers waterways, mountains, and deserts and is struck with wonder by their majesty and beauty. He suffers hunger and thirst. Strange peoples with strange customs sometimes befriend him and sometimes threaten him. The journey ends, and he produces a map of the territory he has traversed. Deserts, mountains, waterways, and names of tribal territories are all in their proper place. They are lines and words on a two-dimensional surface. The richness of the explorer’s experiences is not there.

How often, Dewey wondered, do we give children “maps” void of the experiences that went into the mapmaking? Maps are useful to travelers, of course, but what good is learning the map of a territory you will never travel in? It is the traveling, the experience, that is meaningful and makes knowledge meaningful in its use or its creation. Each child can be like the explorer, creating his or her own meaningful maps of experience in some subject-matter area, but according to Dewey, those experiences need to be carefully planned and deftly guided by the teacher, who already knows the territory.

Dewey uses the terms “logical” and “psychological” to conceptualize aspects of subject matter with regard to the teacher and learner. The logical aspect of subject matter is its organization and form—like the map, the product of exploration and inquiry in a field often abstract, containing generalizations and marking relationships. The logical form of subject matter also contains and categorizes specific information about the field. The teacher is trying to lead the student to some grasp of the logical. It is like Whitehead’s stage of generalization.

The psychological aspect of subject matter is the learner’s experiencing of it. It is like the explorer’s journey—seeing and noting things along the way, getting a feeling for the territory, and reaching points where things fall into place and pieces of the map can be drawn. Dewey believed that it is essential for students to have such experiences of the subject matter. He therefore directs the teacher who is in possession of the logical organization to psychologize it, to provide an environment for the learner that will call out meaningful experiences of key aspects of the subject matter and
suggest aspects of its logical organization and structure appropriate to the learner's level of experience. Learning then proceeds from the psychological to the logical, and the child and the curriculum become part of each other. Before going on, you might want to consider the case "Individualized Learning," in Chapter 8.

The Structure of Subjects

In more recent times, Jerome Bruner provided a similar conceptualization of subject matter, curriculum, and instruction. Bruner believed that "there is no difference in kind between the man at the frontier [of knowledge] and the young student at his own frontier, each attempting to understand." In addition, "the foundations of any subject may be taught to anybody at any age in some form." The key to understanding how this is possible is Bruner's claim that all subjects have a basic structure, a basic set of organizing principles, fundamental ideas, and relationships. Mastery of the structure of any field, then, is the key to understanding it, and Bruner believed that curriculum materials and teaching can be organized in such a way as to provide students with what they need to discover a subject's structure on their own. Much like Dewey's explorer and mapmaker, anyone at any age can map the major features of an experience of subject matter, given the proper materials and the teacher's guidance. "Maps" of structure get richer and more elaborate as students mature and revisit the field. Bruner used the image of a "spiral curriculum" to suggest this cyclic returning to a subject and working out of its structure over time with ever-increasing comprehensiveness. There have been serious questions raised about whether subjects really do have set structures and if students at all stages of their development really are able to think like the scholar on the frontier. Nevertheless, Bruner's conceptualization of subject matter as structured is like Whitehead's stage of generalization and Dewey's logical form of subject matter. Each gives teachers a way to think about leading students to discover and see the network of basic ideas and relationships that holds the facts of any subject together.

Meaningful Learning Experiences

To this point, we have implicitly taken a rather traditional view of curriculum phenomena, focusing on the knowledge embodied in the traditional subjects. We have seen curriculum phenomena conceptualized as verbal knowledge, facts and skills, replicative, associative, applicative, interpretive, romantic, precise, generalized, psychologized, discovered, "mapped," and structured. Some progressives have taken a less traditional view of what should be taught and learned.

If we think of what the majority of people need to know to get on in the everyday adult world, it hardly seems to be history or art or physics or chemistry or mastery of any of the traditional subjects. Rather, it seems to be such things as being able to get along with others, perform required tasks at work and at home, stay healthy, solve problems, and enjoy leisure. Moreover, if it is the student's experience that is crucial to determining whether learning takes place in a good way and results in something meaningful, then why not conceive of the stuff of the curriculum not as subjects but as the experiences themselves? This would focus attention, not on the structure of knowledge, but on the structure of qualities of worthwhile learning experiences that would be useful in life. This is precisely what William Heard Kilpatrick tried to do with his elaboration of the project method.

"The Project Method" was an article in the Teachers College Record, written by Kilpatrick in 1918 to describe his theory of teaching and curriculum, which embodied the spirit and principles of the early-twentieth-century progressive education movement. He characterized the project method as one that combined three elements—wholehearted activity, laws of learning, and ethical conduct—with his basic idea that "education is life." He sought a way to replace traditional teaching methods, which forced learning, with a method in which learning was achieved without compulsion. In daily life, he argued, we learn from the activities we engage in, from our experiences, not from memorizing or studying, but from doing things with a purpose. He believed that this form of "learning-by-living" and "acting with a purpose" should be brought into the school, thus making school and its curriculum not a preparation for life but an actual part of living and life itself. The means for doing this was the "project method."

To highlight the differences between the project method and traditional teaching methods, Kilpatrick used the example of two boys making a kite, one engaged in a self-initiated, wholehearted, purposeful activity and the other under direct compulsion to produce a replica of a model kite. The physical result of both activities is the same—a kite—but what happens, what is experienced, and what is learned in the process by each differ markedly. The first boy eagerly pursues his single goal, using his own end-in-view, a flyable kite, to guide his decisions and check his work along the way. The finished and flying kite supplies satisfaction and the only standard needed to judge the success of the enterprise. The second boy has, as it were, two purposes: to make a kite and to meet the demands and standards of the teacher. The joy of making a flyable kite often is submerged under the fear of not meeting the teacher's expectations. His kite may fly, but he may be downgraded for not tying the string with the "correct" knot.
or using too much paste on the paper or some such thing. The first boy takes pride in his school activities, enjoys thinking and working things through, and seeks out new projects to do and to learn from. The second sees school as providing a set of tasks to be performed under compulsion, not for their own sake or value. He dislikes forced working and thinking under the continual stress of possibly being wrong. If he learns something, it is not primarily for himself that he does so, but for others. For Kilpatrick, the curriculum is the experience, not the subject matter.

The role of the teacher, when using the project method, is to guide and help the students through the four phases of their purposeful acts, “purposing, planning, executing, and judging,” while avoiding the evils of the older instructional ways and the potential dangers of the new, such as wasting time and choosing projects impossible to complete or lacking in potential for significant learning. By encouraging group projects, such as staging a drama or planting a garden, the teacher can utilize the project method in a social setting, which Kilpatrick believed invariably brings out the need for the group to resolve conflicts, create rules and principles for harmonious action, and respect the rights of others. Such ethical concerns grow out of the situation at hand and are neither sets of rules to be learned by rote nor transgressions to be judged and punished by the teacher. Thus, for Kilpatrick, the project method was a personal, social, moral, and democratic vehicle for learning and for building character—which he took to be the most important of all educational aims.

Program Conceptualization

To this point we have considered various conceptualizations of curriculum phenomena that have lent themselves to illuminating the instructional and methodological side of curriculum thinking. In this concluding section, we will look at a sample of conceptualizations that tend to speak more to the programmatic side. Of course, there is no easily drawn distinction between the two. In one sense, Whitehead’s stages lay out a program as well as directing thinking about instruction. Kilpatrick’s project method suggests a curriculum program, not of subjects, but of self-initiated and spontaneous group projects. It will be useful, though, to switch perspectives in this section and focus on programmatic conceptions to show the importance of this way of thinking about the curriculum.

How should we think about the curriculum as a programmatic whole? One way, of course, is sequentially and interrelatedly. Certain things seem to be prerequisites for others; and problems of balance and adequacy need to be considered.

One way of conceptualizing a curriculum program, therefore, is to see it as highly integrated and articulated. Ideas like core curriculum, interdisciplinary studies, and general education programs are related to this approach. Paul Hirst, a British philosopher of education, approaches the
integrated curriculum differently from Dewey, arguing that the main business of education is to develop mind; mind is our ability to know the world through our shared experiences of the world. Hirst believes that human beings can only experience the world in seven or eight basic ways. In the course of our evolution and history as human beings, he believes, we have developed “forms of knowledge,” ways of expressing our knowledge of each of these experiential domains. It is as if we had developed artifactual receptors and processors to sort out and deal with different kinds of experience, much as our natural sense receptors like eyes and ears process the different physical forms, light and sound. Hirst believes that the basic forms of human knowledge are mathematics, physical science, knowledge of persons, literature and fine arts, morals, religion, and philosophy. Each represents our codified ways of experiencing different aspects of the human and natural world we inhabit.

Each has its own network of concepts for capturing some aspect of its realm of experience, and each has ways of properly processing its type of experience as well as having standards for judging claims in its domain. For example, the appreciation of art calls into play a set of concepts, relations, processes, and standards of judgment different from those employed in the appreciation of a logical argument or in the establishment of a scientific claim. The concept of beauty is essential to art, the concept of validity to logic, and the concept of evidence to scientific claims. Different domains of human experience call for different ways to process experience and to justify our claims about that sort of experience. Hirst believes that the curriculum should provide students with an initiation into the various ways of human knowing in each of the forms of knowledge he identifies. His specific rendering of forms of knowledge has been challenged and has changed over the years, but his position has not. The very idea that there are discrete forms of knowledge has also been challenged. Whether he is right or not about discrete forms, he has helped flesh out the idea of what the structure of a subject is. Different subjects do exist and do have their own concepts, theories, methodologies, and standards of judgment.

There are much more limited and concrete ways to come at programmatic conceptualization than those we have considered thus far. Designs of courses, units, and curriculum materials often carry with them specific conceptualizations, even though they are not always overtly identified as such. A reading program based on phonics is different from one based on a whole-word approach in great part because of the way in which literacy is initially conceptualized. A science program based on discovery learning is different from one based on mastery learning. Conceiving of science as discovery, as a special form of controlled inquiry, is different from conceiving of it as a set of established laws and theories that provide us with the means to predict and control nature if only we can master them.

A limitless set of examples of this kind of programmatic curriculum conceptualization is available in the curriculum materials developed and used in the schools today. Think of some curriculum program or materials you are familiar with and try to identify the programmatic conceptualization that underlies it.

Bruner’s Man: A Course of Study (MACOS) provides a classic example of programmatic curriculum conceptualization. It was a social studies course designed for upper elementary grades popular in the United States and Great Britain in the 1970s. MACOS is an example of a spiral curriculum, with concepts being revisited in increasingly complex ways. It does not replicate the traditional social science compartmentalization of studies of man. There is no textbook. There are films, slides, games, stories, and poems that provide students with materials to engage them in thought and inquiry into human nature and human social behavior. Materials on animal behavior provide students with ways to contrast and compare our species with others. MACOS presents a chain of life, or the life history of living things, starting with a study of the life cycle of the salmon and moving to more complex life forms. For instance, it shows that parental care of the young is not essential to the survival of the species; but some animals, such as herring gulls and baboons, do provide such care, as do humans, and it does seem essential for them. Moreover, a study of baboons shows complex social behavior, not only regarding child rearing but also with respect to providing food, developing interpersonal relationships, territoriality, aggression, and so forth. Learning about and using a distant and distinct culture, the Netsilik Eskimos, as a representative human society, students attempt to discern those aspects of human nature and social behavior that seem universal from those that seem to arise because of environment and culture. The whole course is directed toward allowing students to discover how humans are distinctive from and what we share with other living creatures. This conceptualization of social studies suggests and justifies a very different curriculum from the traditional one. MACOS was one of the most controversial curriculum projects to emerge from efforts to revise curriculum in the United States in the post-Sputnik era.

Perhaps the most radical conceptualization of the curriculum from a programmatic point of view was Kilpatrick’s, and it provides a fitting way to end this chapter by challenging your thinking. As we have seen in our discussion of the project method, Kilpatrick saw purposeful life experiences to be the essential stuff of the curriculum. But he believed that purposes had to come genuinely from the students themselves and should not be artificially provided by teachers. Therefore, Kilpatrick reasoned, there should be no preset curriculum. The curriculum should be created on the spot, out of the needs and purposes of the students! What do you think? Would such a curriculum be consistent with the other im-
Important educational aims for which schools have traditionally assumed a responsibility? Would the means chosen by Kilpatrick to achieve the end of a meaningful education be the only way of achieving this aim? If not, would it be the best way? A good way? What factors should enter into an educator’s decision to adopt Kilpatrick’s proposal? Before going on you might want to consider the case “Grading Policies” or the dispute “A Social Studies Curriculum,” in Chapter 8.

For Further Inquiry

Leads at structure of schooling and curriculum from a feminist perspective.

Shows a style of curriculum work that emerged at the end of the twentieth century. It is committed to reform and yet strives for objective evidence of the reform’s superiority. It integrates teaching questions with subject-matter questions and looks at both with the lens of theory (sociocultural theories of learning in this case) and research (intensive and lengthy classroom observation as well as testing).

Discusses ways teachers can deepen content knowledge through story, conceptualize, and develop their own curriculum frameworks.

Includes essays by key figures whose work led to rethinking of curriculum theory and practice by the early 1970s. Each is preceded by a short biographical sketch of the author. Pinar introduces the term reconceptualist in this book, a term that has come to characterize a particular view of curriculum that challenges traditional conceptions of schools, curriculum, and teaching.

Chapters by scholars interested in K–12 education offer historical perspectives on looks at the aims and effects of curriculum. Includes a chapter that critically analyzes the emergence of learning disabilities as an educational construct.

Chapter 5

Procedures for Curriculum Making

In this chapter our focus shifts again. This time it is a shift from what and why to how, from a search for answers to the primary curriculum questions of what to teach and why, to a search for useful methods for finding the answers. If you are not certain what the curriculum for a school or for a subject should be, or if people of good will disagree about it, how might you proceed? Are there different ways of figuring out what the curriculum should be? If so, are some of these ways better than others? How should you go about making a curriculum? Where should you start and what should you do?

Sources of Curriculum Making

Given the task of making your own curriculum as a teacher, you might decide to spin the curriculum out of your head, like a spider using its inner resources to produce an intricately patterned web. After all, you know your subject matter and you have ideas about what students at the age level you will teach should learn. Or you might, like an ant, go about gathering bits and pieces of curriculum materials relevant to your subject and grade level and pile them up for use as you need them. Once they are collected, you might even organize them in a way that seems appropriate. Of course, you could just go directly to the curriculum guide provided by your school or district. Not a bad idea sometimes, but how did its makers proceed when they designed it? Like the spider? Like the ant? In some other way? Does it matter? Why or why not? This is our concern in this chapter.

Curriculum making can be subject-, learner-, or society-centered. We have seen some examples of these general orientations toward curriculum making in previous chapters. The Committee of Ten, for instance, approached the task of curriculum making from a subject-centered point of view. Once the aim of college preparation was posited and a set of relevant academic subjects determined, the real work of curriculum making began. Experts were recruited to break down their subjects into units that then